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Abstract

A new multi-state Harten–Lax–van Leer (HLL) approximate Riemann solver for the ideal magnetohydrodynamic

(MHD) equations is developed based on the assumption that the normal velocity is constant over the Riemann fan.

This assumption is same as that used in the HLLC (‘‘C’’ denotes Contact) approximate Riemann solver for the Euler

equations. From the assumption, it is naturally derived that the Riemann fan should consist of four intermediate states

for Bx 6¼ 0, whereas the number of the intermediate states is reduced to two when Bx = 0. Since the intermediate states

satisfied with all jump conditions in this approximate Riemann system are analytically obtained, the multi-state HLL

Riemann solver can be constructed straightforwardly. It is shown that this solver can exactly resolve isolated discon-

tinuities formed in the MHD system, and hence named as HLLD Riemann solver. (Here, ‘‘D’’ stands for Discontinu-

ities.) It is also analytically proved that the HLLD Riemann solver is positively conservative like the HLLC Riemann

solver. Indeed, the HLLD Riemann solver corresponds to the HLLC Riemann solver when the magnetic field vanishes.

Numerical tests demonstrate that the HLLD Riemann solver is more robust and efficient than the linearized Riemann

solver, and its resolution is equally good. It indicates that the HLLD solver must be useful in practical applications for

the ideal MHD equations.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The magnetohydrodynamic (MHD) equations are the basic equations to represent macroscopic phe-

nomena in various fields such as laboratory, space, and astrophysical plasmas, and the development of
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accurate, efficient, and robust numerical schemes for MHD becomes increasingly important. Particularly,

in space and astrophysical plasmas, it can often happen that the density becomes rather low and the inter-

nal energy is less dominant than the kinetic energy and, in some cases, the magnetic energy. The physical

solutions of the MHD equations possess a positivity preserving property such that positive densities and

positive pressures must be retained in every situation. However, numerical simulations for such low density
plasmas sometimes generate unphysical solutions of negative densities or negative pressures. Therefore,

robustness of the MHD scheme is quite important for practical applications with realistic parameters.

In order to obtain accurate numerical solutions for the ideal MHD equations, Brio and Wu [4] first

developed the Roe-type linearized Riemann solver [26] for MHD with c = 2. For general c, construction
of the Roe-type matrix and corresponding Roe-type average, which are more elaborate than those for

c = 2, has been pursued, for instance, by Cargo and Gallice [5] or Balsara [1]. Practically, an arithmetic

average was often utilized instead of the Roe average, and it seems to work well [27]. Although the linear-

ized Riemann solver for MHD is considerably more complicated than for the Euler equations and less effi-
cient than ‘‘classical’’ MHD schemes such as Lax–Wendroff, it is accurate and robust enough and also

efficient in comparison with the nonlinear Riemann solver [6,27]. Thus, the linearized Riemann solver might

be a standard solver for the practical MHD simulations at present (e.g., [18,22,25,28]).

However, it has been shown that any linearization of certain Riemann problems for the Euler equations

will yield a negative density or pressure, and therefore, no linearized Riemann solver for the Euler equations

can maintain the positivity of density and pressure in every situation [9]. Moreover, the linearized Riemann

solvers for MHD become more problematic than for the Euler equations in terms of positivity because neg-

ative pressures may be produced by numerical errors of not only the kinetic energy but also the magnetic
energy.

As for the Euler solvers, the positivity preserving property is assured by variants of the flux vector split-

ting (FVS) method [12], the Harten–Lax–van Leer (HLL) approximate Riemann solver [9] and the HLLC

Riemann solver (where ‘‘C’’ stands for Contact wave) [2]. These schemes are said to be positively conser-

vative. Particularly, we notice that the HLLC Riemann solver where the intermediate states in the Riemann

fan are separated into two intermediate states by a contact discontinuity can resolve isolated contact dis-

continuities exactly. The other positively conservative schemes cannot resolve those discontinuities and,

as a consequence, are quite dissipative.
On the other hand, for MHD, appropriate FVS schemes equivalent to the Euler equations have not been

constructed so far partly because the flux function of the MHD equations is not homogeneous of degree

one in the vector of the conservative variables. The positivity preserving property of the HLL Riemann sol-

ver for MHD was investigated by Janhunen [16], where the MHD equations are modified to allow numer-

ical magnetic monopoles, and confirmed from the extensive numerical experiments. Recently, Gurski [13]

extended the HLLC Riemann solver of the Euler equations to the MHD equations and proposed an

HLLC-type MHD Riemann solver and a modified version of the HLLC solver called smooth HLLC.

The smooth HLLC was thought to be more accurate than the HLLC-type solver and a positively conser-
vative variant of Linde�s two-state approximate Riemann solver [20,21]. Independently, Li [19] also pre-

sented another variant of the HLLC-type Riemann solver for MHD. However, those solvers may not

exactly resolve isolated rotational discontinuities probably due to the two-state approximation in the

Riemann fan, although the HLLC-type Riemann solvers are more efficient than the standard linearized

Riemann solver. As a result, it seems that the numerical resolution of the HLLC-type MHD solvers is

not comparable with that of the linearized solver except for fast and entropy waves.

Thus, the previous schemes that are positively conservative for MHD are not satisfactory with respect to

resolution, although the positivity preserving property is quite important in practical applications. There-
fore, in this paper, a new scheme for the MHD equations is developed, which can satisfy the requirements

of both positivity and high resolution nearly comparable to the linearized Riemann solver. The new solver

is constructed by extending the HLL and the HLLC solvers for the Euler equations. Although there is
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another essential problem for multi-dimensional MHD concerned with the violation of the divergence

constraint (see, e.g., [8,16]), discussions of positivity here are restricted to one-dimensional MHD. Our

HLL based solver for MHD can exactly resolve not only isolated contact discontinuities but also all other

isolated discontinuities formed in the ideal MHD system, and therefore, the solver is named as HLLD.

The organization of the paper is as follows: After introduction, the MHD equations and their nature are
presented in Section 2. We briefly review the single-state and two-state HLL approximate Riemann solvers

in Sections 3 and 4. In Section 5.1, new multi-state approximate Riemann solver for MHD, called HLLD

solver, is proposed. The important properties of the HLLD solver such as an exact resolution of disconti-

nuities and a positivity preserving property are argued in Sections 5.2 and 5.3. In Section 6, several numer-

ical tests are performed, and those results are discussed. Finally, concluding remarks are given in Section 7.
2. Governing equations

General one-dimensional hyperbolic conservation laws can be written as
oU

ot
þ oF

ox
¼ 0; ð1Þ
where all eigenvalues of the Jacobian A = oF/oU are real and distinct, and the set of corresponding eigen-

vectors is complete. In one-dimensional ideal MHD equations, the conservative variable vector U and the

flux function F are given by
U ¼

q

qu

qv

qw
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e
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where v = (u, v, w), B = (Bx, By, Bz), pT denotes the total pressure, and other notations are standard. Here,

due to the divergence free condition of the magnetic field, Bx is given as a constant in one dimension. The
pressure p and the total pressure pT are given by
p ¼ ðc� 1Þ e� 1

2
qjvj2 � 1

2
jBj2

� �
and pT ¼ p þ 1

2
jBj2;
respectively.

It is well known that these equations have seven eigenvalues which correspond to two Alfvén waves, four

magneto-acoustic (two fast and two slow) waves, and one entropy wave:
k2;6 ¼ u� ca; k1;7 ¼ u� cf ; k3;5 ¼ u� cs; k4 ¼ u; ð3Þ

where
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jBxjffiffiffi
q

p ; cf ;s ¼
cp þ jBj2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp þ jBj2
� �2

� 4cpB2
x

r
2q

8>><
>>:

9>>=
>>;

1=2

:



318 T. Miyoshi, K. Kusano / Journal of Computational Physics 208 (2005) 315–344
It is obvious that the inequalities
k1 6 k2 6 k3 6 k4 6 k5 6 k6 6 k7
are satisfied, and thus, some eigenvalues may coincide depending on the direction and the strength of the
magnetic field. Therefore, the MHD equations are not strictly hyperbolic, and, as a consequence, the com-

plete set of the eigenvectors is not obtained straightforwardly [1,4,5]. In addition, as first pointed out by

Brio and Wu [1], the flux function F is not convex in the vector U in the MHD system.

Since the MHD equations possess non-convexity as well as non-strict hyperbolicity, a solution of the

Riemann problem may be composed not only of ordinary shock and rarefaction waves but also other waves

as compound waves and overcompressible shocks [4,17]. Although it is not so easy to solve the Riemann

problem for such MHD system in general, the discontinuous solutions formed by the regular waves can be

discussed easily using the Rankine–Hugoniot relations, S[U] = [F], where S denotes the speed of the discon-
tinuities and [ Æ ] indicates the jump of the states ahead of and behind the discontinuities, U1 and U2. When

we consider solutions for which u1, u2 6¼ S, i.e., there is net particle transport across the discontinuities, and

Bx 6¼ 0, three types of shock solutions are obtained. In the cases of the compressible solutions, that is,

q1 < q2 and u1 > u2, the fast and slow shocks are realized, in which both shocks conserve the signs of the

tangential components of the magnetic field. While the magnetic field is strengthened behind the fast shock,

it is weakened behind the slow shock. On the other hand, the incompressible condition for which q1 = q2
and u1 = u2 gives the following relations:
½q� ¼ ½p� ¼ B2
y þ B2

z

h i
¼ 0; � ffiffiffi

q
p ½v� ¼ ½By �; � ffiffiffi

q
p ½w� ¼ ½Bz�; ð4Þ
across the discontinuity which moves with the Alfvén wave speed k2 or k6. This solution is called the Alfvén

shock. Since thermodynamical quantities, q and p, are not changed across the discontinuity, it is also called

the rotational discontinuity. Also, the discontinuity moving with the entropy wave speed k4 must be satisfied

with
½By � ¼ ½Bz� ¼ ½v� ¼ ½w� ¼ ½p� ¼ 0 ð5Þ
for the case of Bx 6¼ 0, or
p þ
B2
y þ B2

z

2

" #
¼ 0 ð6Þ
for Bx = 0. The former discontinuity is called the contact discontinuity. At the contact discontinuity, the tan-

gential components of the velocity and magnetic field must be continuous. The latter relation, on the other
hand, indicates that the tangential velocity and the tangential magnetic field may have a jump across the

discontinuity. Thus, that is called the tangential discontinuity.
3. HLL Riemann solver

Let us consider general hyperbolic conservation laws (1), where U and F are not specified here. The inte-

gral form of the conservation laws for a rectangle (x1, x2) · (t1, t2) is given by
Z x2

x1

Uðx; t2Þdx�
Z x2

x1

Uðx; t1Þdxþ
Z t2

t1

F Uðx2; tÞð Þdt �
Z t2

t1

F Uðx1; tÞð Þdt ¼ 0: ð7Þ
Harten et al. [15] showed that the Godunov-type scheme for (1) can be written in conservative form:



T. Miyoshi, K. Kusano / Journal of Computational Physics 208 (2005) 315–344 319
Unþ1
i ¼ Un
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F Rð0;Un
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� �� 	
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where n and i indicate a time step and a cell number, respectively, and Rðx=t;Un
i ;U

n
iþ1Þ is the approximate

solution of the Riemann problem around the interface xi+1/2. In this form, the appropriate numerical fluxes

are obtained by applying the integral conservation laws (7) over the rectangle (xi, xi+1/2) · (tn, tn+1) as
Fiþ1=2 ¼ Fi �
1

Dt

Z xiþ1=2

xi

R
x� xiþ1=2

Dt
;Un

i ;U
n
iþ1

� �
dxþ xiþ1=2 � xi

Dt
Un

i ; ð8Þ
where Fiþ1=2 ¼ FðRð0;Un
i ;U

n
iþ1ÞÞ;Fi ¼ FðUn

i Þ, and Dt = tn+1 � tn. We note that the exact solution of the Rie-

mann problem Rexact produces the fluxes of the original Godunov scheme. The numerical fluxes Fi+1/2 ob-

tained by the other integral conservation laws over (xi+1/2, xi+1) · (tn, tn+1) must coincide with (8) due to the

consistency with the integral form of conservation laws over (xi, xi+1) · (tn, tn+1).

Particularly, Harten et al. [15] proposed one of the simplest Godunov-type scheme, the so-called HLL
approximate Riemann solver. The HLL Riemann solver is constructed by assuming an average intermedi-

ate state between the fastest and slowest waves. Consider a ‘‘subsonic’’ solution of the single-state approx-

imate Riemann problem at the interface between the left and right states, UL and UR, where the minimum

signal speed SL and the maximum signal speed SR are negative and positive, respectively (Fig. 1). By apply-

ing the integral conservation laws (7) over the Riemann fan, (DtSL, DtSR) · (0, Dt), the intermediate state is

given by
U� ¼ SRUR � SLUL � FR þ FL

SR � SL

: ð9Þ
After that, as denoted by (8), the integral over (DtSL, 0) · (0, Dt) gives the HLL fluxes,
F� ¼ SRFL � SLFR þ SRSLðUR �ULÞ
SR � SL

: ð10Þ
If both signal speeds are of the same sign, the fluxes must be evaluated only from the upstream side. There-

fore, in general, the HLL fluxes become
FHLL ¼
FL if SL > 0;

F� if SL 6 0 6 SR;

FR if SR < 0:

8><
>: ð11Þ
Practically, (11) can be unified with (10) if the signal speeds are replaced by SL = min(SL, 0) and

SR = max(SR, 0).

In order to complete the HLL Riemann solver, SR and SL must be estimated appropriately. Correctly

speaking, the upper and lower bounds of the signal speed in the system cannot be obtained without infor-

mation of the exact Riemann solution [2]. Particularly, the difficulty for the MHD equations may be
UL UR

U∗

S  = x/tL S  = x/tR

x

t

Fig. 1. Schematic structure of the Riemann fan with one intermediate state.



320 T. Miyoshi, K. Kusano / Journal of Computational Physics 208 (2005) 315–344
increased because bounded waves are capable of compound waves. Therefore, we should determine the

algorithm as exactly as possible so as not to underestimate the minimum and maximum signal speeds.

For example, Davis [7] gave those speeds as
SL ¼ min k1ðULÞ; k1ðURÞ½ �;
SR ¼ max kmðULÞ; kmðURÞ½ �;

ð12Þ
or Einfeldt et al. [9] used the algorithm as
SL ¼ min k1 ULð Þ; k1 URoe
� �� 	

;

SR ¼ max km URoe
� �

; km URð Þ
� 	

;
ð13Þ
where k1 and km are the smallest and largest eigenvalues of (1), and kj(U
Roe) denotes the eigenvalue of the

Roe matrix. Although these are not correct bounds of the signal speed [2], these algorithms seem to be

highly effective. Indeed, the HLL solver for the Euler equations with appropriate choices for SL and SR

is extremely robust since it satisfies an entropy inequality automatically [7] and ensures a positivity preserv-

ing property [9]. The robustness of the HLL solver is also expected for the MHD equations [16].

However, the HLL solver cannot resolve isolated discontinuities and, as a result, is quite dissipative be-

cause the solution of the Riemann problem is approximated by one intermediate state. Therefore, it is a

natural thought that the single-state approximation should be extended to a two-state approximation in

order to be more accurate while maintaining the nice properties.
4. Two-state HLL Riemann solver

4.1. HLLC Riemann solver for the Euler equations

In this subsection, we devote attention to the solver for the Euler equations, which are obtained by set-

ting the magnetic field to zero in (2). In [15], it was suggested that a two-state approximate Riemann solver
could be constructed to exactly resolve isolated contact discontinuities as well as isolated shocks although

that was not implemented practically. However, Toro et al. [29] proposed a simple implementation of the

two-state HLL Riemann solver for the Euler equations.

Consider the approximate Riemann problem in the Riemann fan which is separated into the left and the

right intermediate states, U�
L and U�

R, by the contact wave, SM, as shown in Fig. 2. Toro et al. [29] assumed

that the normal component of the velocity is constant over the Riemann fan, that is,
u�L ¼ u�R ¼ SM :
Particularly, Batten et al. [2] insisted that SM should be evaluated from the HLL average (9) as
UL UR

UL∗ UR∗

SL SRSM

x

t

Fig. 2. Schematic structure of the Riemann fan with two intermediate states.
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SM ¼ ðquÞ�

q� ¼ ðSR � uRÞqRuR � ðSL � uLÞqLuL � pR þ pL
ðSR � uRÞqR � ðSL � uLÞqL

; ð14Þ
where SL and SR are estimated by (12) or (13). Once SM is given by (14), the jump conditions across the Sa

wave,
SaU
�
a � F�

a ¼ SaUa � Fa; ð15Þ

where a = L or R, give the pressure in the Riemann fan as
p� ¼ p�L ¼ pL þ qLðSL � uLÞðSM � uLÞ
¼ p�R ¼ pR þ qRðSR � uRÞðSM � uRÞ: ð16Þ
These equalities are consistent with the fact that the pressure does not change across the contact disconti-

nuity. Also, other intermediate states are derived from (15):
q�
a ¼ qa

Sa � ua
Sa � SM

; ð17Þ

v�a ¼ va; ð18Þ

w�
a ¼ wa; ð19Þ

e�a ¼
ðSa � uaÞea � paua þ p�SM

Sa � SM
: ð20Þ
Thus, we obtain the complete set of U�
a and F�

a. It is certain that the jump condition across the middle wave

SM is satisfied. Since the integral conservation laws over (SLDt, 0) · (0, Dt) for SMP0 and

(0, SRDt) · (0, Dt) for SM60 coincide with (15), the two-state HLL fluxes become
FHLLC ¼

FL if SL > 0;

F�
L if SL 6 0 6 SM ;

F�
R if SM 6 0 6 SR;

FR if SR < 0:

8>>><
>>>:

ð21Þ
This solver is called HLLC Riemann solver since the HLLC solver can resolve isolated contact discontinu-

ities exactly [2,29].

Batten et al. [2] showed that the HLLC solver is positively conservative if the conditions,
SL < uL �

ffiffiffiffiffiffiffiffiffiffiffi
c� 1

2c

s
aL; SR > uR þ

ffiffiffiffiffiffiffiffiffiffiffi
c� 1

2c

s
aR ð22Þ
where a is the sound speed
ffiffiffiffiffiffiffiffiffiffi
cp=q

p
, are satisfied. These are the same conditions as those for the single-state

HLL Riemann solver shown by Einfeldt et al. [9] exactly and always satisfied by the estimates of (12) or

(13).
4.2. HLLC-type Riemann solver for the MHD equations

Before constructing the new solver, some approaches to the extension of the HLLC Riemann solver for

the Euler equations to the MHD equations are worth reviewing and discussing.

Recently, Gurski [13] developed the HLLC-type Riemann solver for ideal MHD, where the Riemann fan

is separated into two intermediate states, U�
L and U�

R, in the same way as the HLLC Riemann solver. As an
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estimation of SL and SR, the algorithm (13) is adopted. Also, the middle wave SM is evaluated from the

HLL average like the HLLC. In MHD, the total pressure must be continuous across the middle wave in-

stead of the pressure in the Euler equations as found from (5) or (6). Therefore, (16) is replaced by
p�T ¼ pTL
þ qLðSL � uLÞðSM � uLÞ

¼ pTR
þ qRðSR � uRÞðSM � uRÞ: ð23Þ
Since the normal velocity in the Riemann fan is assumed to be constant, the densities in the intermediate

states q�
a are given by the same as the HLLC Riemann solver, (17). In the case of Bx = 0, the tangential

momentum equations of MHD coincide with those of the Euler equations. Also, the tangential components

of the magnetic field behave like passive scalars. Therefore, in this case, the intermediate states,
v�a ¼ va; ð24Þ

w�
a ¼ wa; ð25Þ

B�
ya
¼ Bya

Sa � ua
Sa � SM

; ð26Þ

B�
za
¼ Bza

Sa � ua
Sa � SM

; ð27Þ

e�a ¼
ðSa � uaÞea � pTa

ua þ p�TSM

Sa � SM
; ð28Þ
are easily obtained by the similar procedure for the HLLC solver. In the case of Bx 6¼ 0, on the other hand,

the intermediate states from (24)–(28) are not consistent with the jump condition on the contact disconti-

nuity (5) in which the tangential components of the velocity and magnetic field must be continuous. There-
fore, those are replaced by the HLL average (9) as
v�L ¼ v�R ¼ ðqvÞ�

q� � v�; ð29Þ

w�
L ¼ w�

R ¼ ðqwÞ�

q� � w�; ð30Þ

B�
yL

¼ B�
yR

¼ B�
y ; ð31Þ

B�
zL
¼ B�

zR
¼ B�

z ; ð32Þ

e�a ¼
ðSa � uaÞea � pTa

ua þ p�TSM þ Bxðva � Ba � v� � B�Þ
Sa � SM

: ð33Þ
Finally, F�
a are computed from each jump condition. This solver is referred to as HLLC-G Riemann solver

in this paper.

It is found that the fluxes obtained by (29)–(33) are not reduced to those by (24)–(28) in the limit of

Bx = 0, and partly correspond to the single-state HLL fluxes. Therefore, the HLLC-G Riemann solver can-

not simulate the structures related to the Alfvén and slow waves with high enough resolution although iso-

lated contact discontinuities as well as isolated fast shocks can be resolved exactly.

In order to resolve the discontinuities across the slow and Alfvén waves sharply, Gurski [13] also pro-

posed another method, as it were extended HLLC-type solver, where the intermediate states are obtained
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by the jump conditions on Sa (15) properly. (These intermediate states will be shown later explicitly by (44)–

(48) in subsection 5.1.) Although these are reduced to (24)–(28) in the case of Bx = 0, the jump condition

across the middle wave is not satisfied, and thus, the conservation laws in the Riemann fan are broken

in the sense of HLL-type solver. Consequently, as shown in Fig. 5 of [13], unphysical oscillations are pro-

duced even in the simple one-dimensional shock tube test. To remove these oscillations, a certain dissipa-
tion was also introduced in analogy with Linde�s Riemann solver [20,21].

As another approach to recover the resolution of the HLLC-G solver and to suppress unphysical oscil-

lations in the extended HLLC-type solver, by introducing the following form of the intermediate tangential

velocities as
v�a ¼ va þ
Bx Bya � B�

y

� �
qa Sa � uað Þ ; ð34Þ

w�
a ¼ wa þ

Bx Bza � B�
z

� �
qa Sa � uað Þ ; ð35Þ
instead of (29) and (30), Li [19] constructed another HLLC-type Riemann solver for MHD, referred to as

HLLC-L Riemann solver in this paper. The intermediate states of the HLLC-L solver are consistent with

the integral of the conservation laws over the Riemann fan as opposed to the extended HLLC-type solver.

Also, the HLLC-L solver naturally returns to the HLLC solver in the limit of zero magnetic field. We note,

however, that the HLLC-L solver does not necessarily satisfy the jump condition on the contact disconti-

nuity (5) due to the definitions (34) and (35). This fact does not mean that the HLLC-L solver cannot re-
solve isolated contact discontinuities exactly. In addition, since (31) and (32) are still used as the

intermediate states of the magnetic field even in the HLLC-L solver, (26) and (27) cannot be realized in

the limit where Bx becomes zero.
4.3. Linde�s Riemann solver for hyperbolic conservation laws

Another two-state HLL Riemann solver was constructed by Linde [20,21]. In this solver, the jump of the

intermediate states are connected with the jump of the left and the right states empirically by
U�
R �U�

L ¼ bðUL;URÞðUR �ULÞ; 0 6 b 6 1; ð36Þ

where b becomes 1 if an isolated discontinuity is detected in the Riemann fan, whereas b is 0 if the inter-

mediate states are continuous. Thus, b is considered as a strength of the middle wave. Then, Linde�s fluxes
are derived by substituting (36) into the integral conservation laws over the two-state approximate Riemann

fan as
F�
a ¼

SRFL � SLFR þ ð1� bÞSRSLðUR �ULÞ þ bSaSMðUR �ULÞ
SR � SL

: ð37Þ
We find at once that Linde�s fluxes return to the single-state HLL fluxes (10) when b becomes zero.
Since SM and b are not specified in particular, it is obvious that the ability of the Linde solver is strongly

dependent on the choice of SM and b. In [20], SM and b are given by the Roe average of the normal velocity

and a heuristic linear function with respect to a gap from the jump condition, SMDU � DF, while those are
obtained through the least-squares solution of the jump condition with appropriate rescaling in [21]. Par-

ticularly, the latter method does not need any information about the eigensystem for the conservation laws.

Thus, one can construct various versions of the Linde solver by introducing some adequate SM and b.
Gurski [13] indicated that the expressions of the HLLC Riemann fluxes can be reformulated similar to

Linde�s fluxes. This is not surprising because the Linde solver may include any two-state Riemann solver
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due to the arbitrariness of SM and b. The reformulation of the HLLC-type MHD solver inspired that the

extended HLLC-type solver which is accurate but oscillatory can be modified so as to smooth unwanted

oscillations while preserving the positivity of density and pressure [13]. In this solver, named as smooth

HLLCMHD solver, SM is given by the HLL average and b is computed from A*�1DW* = bA�1DW instead

of (36), where DW possesses the unit of momentum and a certain linearization as DU = A�1DW is assumed.
The smooth HLLC MHD solver is thought to be a positively conservative variant of the Linde solver.

The advantage of Linde�s method is that the algorithm of the solver is independent of the details of the

governing equations despite the exact resolution of isolated contact discontinuities. However, necessary and

sufficient conditions of b to eliminate numerical oscillations completely have not been presented yet, and

some class of Linde�s fluxes may generate unphysical oscillations. Therefore, the Linde solver should be ap-

plied for a complex system without detail knowledge of its characteristics rather than the well-known sys-

tem as the Euler equations and the MHD equations [21].
5. Multi-state HLL Riemann solver

5.1. HLLD Riemann solver for the MHD equations

The HLLC-type Riemann solvers for MHD as reviewed in the previous section may have some

inconsistency with respect to the jump conditions without a particular treatment. We suppose that the

HLLC-type solvers may include inconsistency between the assumption of constant normal velocity and
the two-state approximation of the intermediate states in the Riemann fan. Therefore, in this subsection,

the multi-state (more than two-state) HLL Riemann solver for the MHD equations is constructed based

on the same basic assumption as that in the HLLC Riemann solver for the Euler equations.

Assume that the normal velocity is constant over the Riemann fan. Our assumption which is the same as

in the HLLC solver [2,29] leads to the following noticeable conclusions: The normal velocity in the Rie-

mann fan corresponds to the speed of the middle (entropy) wave. The total pressure is constant over the

Riemann fan. Slow shocks cannot be formed inside the Riemann fan. Rotational discontinuities propagat-

ing with the Alfvén waves, on the other hand, may be generated. The latter two conclusions suggest that, in
order to construct a more accurate HLL Riemann solver for MHD than the single-state HLL solver, the

Riemann fan may be divided into four intermediate states, U�
L;U

��
L ;U

��
R ; and U�

R, as illustrated in Fig. 3.

Therefore, we consider the approximate Riemann problem in the four-state Riemann fan separated by

one entropy and two Alfvén waves, SM and S�
L; S

�
R.

The choice of SM, in the present solver, is to evaluate the average normal velocity from the HLL average

(9) as Batten et al. [2], Gurski [13] and Li [19] did:
SM ¼
ðSR � uRÞqRuR � ðSL � uLÞqLuL � pTR

þ pTL

ðSR � uRÞqR � ðSL � uLÞqL

; ð38Þ
∗∗ ∗∗

UL UR

UL∗
UL

UR∗
UR

SL SRSRSL SM

x

t
* *

Fig. 3. Schematic structure of the Riemann fan with four intermediate states.
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which is identical to (14) except that p is replaced by pT. Since the normal velocity is assumed to be constant

over the Riemann fan, the equalities
u�L ¼ u��L ¼ u��R ¼ u�R ¼ SM ð39Þ

are given. In addition to (39), our assumption will restrict the total pressure to constant as
p�TL
¼ p��TL

¼ p��TR
¼ p�TR

¼ p�T: ð40Þ
The average total pressure p�T in the Riemann fan should be evaluated consistent with the jump conditions

for each wave. The present choice of SM (38) consistently gives the equalities that p�T ¼ p�TL
¼ p�TR

from the

jump conditions of the normal momentum across SR and SL as indicated by (23) for the HLLC-type solver.
More explicitly, (23) can also be rewritten as
p�T ¼
ðSR � uRÞqRpTL

� ðSL � uLÞqLpTR
þ qLqRðSR � uRÞðSL � uLÞðuR � uLÞ

ðSR � uRÞqR � ðSL � uLÞqL

: ð41Þ
The other equalities p��TL
¼ p��TR

¼ p�T are also satisfied automatically as shown later. Note that contact, tan-

gential, and rotational discontinuities can be formed in the Riemann fan even under the restriction (40).

Once SM and p�T are given, the states U�
a neighboring Ua are obtained from the jump conditions across

Sa,
Sa

q�
a

q�
aSM

q�
av

�
a

q�
aw

�
a

B�
ya

B�
za

e�a

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

�

q�
aSM

q�
aS

2
M þ p�T � B2

x

q�
av

�
aSM � BxB�

ya

q�
aw

�
aSM � BxB�

za

B�
ya
SM � Bxv�a

B�
za
SM � Bxw�

a

ðe�a þ p�TÞSM � Bxðv�a � B
�
aÞ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼ Sa

qa

qaua
qava
qawa

Bya

Bza

ea

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

�

qaua
qau

2
a þ pTa

� B2
x

qavaua � BxBya

qawaua � BxBza

Byaua � Bxva
Bzaua � Bxwa

ðea þ pTa
Þua � Bxðva � BaÞ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; ð42Þ
where a = L or R as used in the previous section. It is certain that the second equation of (42) is consistent

with our choice of SM and p�T because p�T itself is derived from this equation. The first equation of (42) gives
q�
a ¼ qa

Sa � ua
Sa � SM

; ð43Þ
which is identical to (17) except for the expression of SM. Solving the third and fifth equations of (42) simul-

taneously, one obtains that
v�a ¼ va � BxBya

SM � ua
qaðSa � uaÞðSa � SMÞ � B2

x

; ð44Þ

B�
ya
¼ Bya

qaðSa � uaÞ2 � B2
x

qaðSa � uaÞðSa � SMÞ � B2
x

: ð45Þ
Also, from the fourth and sixth equations, we obtain that
w�
a ¼ wa � BxBza

SM � ua
qaðSa � uaÞðSa � SMÞ � B2

x

; ð46Þ

B�
za
¼ Bza

qaðSa � uaÞ2 � B2
x

q ðS � u ÞðS � S Þ � B2
: ð47Þ
a a a a M x
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Note that the numerical operations of 0/0 seem to appear in (44)–(47) if SM = ua, Sa ¼ ua � cf a,
Bya ¼ Bza ¼ 0, and B2

x P cpa. In these cases, (44)–(47) can be simply replaced by v�a ¼ va;w�
a ¼ wa, and

B�
ya
¼ B�

za
¼ 0 since there is no shock across Sa i.e., q�

a ¼ qa; u�a ¼ ua; and p�Ta
¼ pTa

. Finally, the seventh

equation of (42) with (44)–(47) gives e�a as
e�a ¼
ðSa � uaÞea � pTa

ua þ p�TSM þ Bxðva � Ba � v�a � B�
aÞ

Sa � SM
: ð48Þ
The expressions (44)–(48) are the same than those employed for the intermediate states of the extended

HLLC-type Riemann solver for MHD [13].

Subsequently, the inner intermediate states U��
a are considered. From the jump condition of the continu-

ity equation across an arbitrary S where SL < S < SM or SM < S < SR,
q��
a ¼ q�

a; ð49Þ

because of the relation (39).When (49) is given, the jump condition for the normalmomentumacrossS leads to
p��Ta
¼ p�Ta

: ð50Þ
Thus, (40) is satisfied. Also from (49), it is appropriate that the propagation speeds of the Alfvén waves (3)

in the intermediate states are evaluated by
S�
L ¼ SM � jBxjffiffiffiffiffi

q�
L

p ; S�
R ¼ SM þ jBxjffiffiffiffiffiffi

q�
R

p : ð51Þ
Although we should consider the other jump conditions across S�
a waves, the jump conditions,
S�
a
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0
BBB@

1
CCCA; ð52Þ
appear not to be solvable if S�
a is defined by (51).

Therefore, we consider the jump conditions for the tangential components of the velocity and magnetic
field across SM,
SM

q�
Lv

��
L

q�
Lw

��
L

B��
yL

B��
zL

0
BBB@

1
CCCA�
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��
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��
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zL

B��
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B��
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BBB@

1
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1
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q�
Rv

��
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yR
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zR

B��
yR
SM � Bxv��R

B��
zR
SM � Bxw��

R

0
BBB@

1
CCCA: ð53Þ
It is obvious that the equalities
v��L ¼ v��R � v��; ð54Þ

w��
L ¼ w��

R � w��; ð55Þ

B��
yL

¼ B��
yR

� B��
y ; ð56Þ

B��
zL
¼ B��

zR
� B��

z ð57Þ
are derived from (53) if Bx 6¼ 0. These equalities indicate the conditions for the contact discontinuities (5).

On the other hand, if Bx = 0, (53) also becomes unsolvable. The case of Bx = 0 is discussed later. The rela-

tions (54)–(57) show that v, w, By, and Bz are approximated by three intermediate states in our assumption
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(Fig. 4). Therefore, by substituting (49),(51), and (54)–(57) into the integral conservation laws over the Rie-

mann fan,
ðSR � S�
RÞU

�
R þ ðS�

R � SMÞU��
R þ ðSM � S�

LÞU
��
L þ ðS�

L � SLÞU�
L � SRUR þ SLUL þ FR � FL ¼ 0; ð58Þ
it is derived that
v�� ¼
ffiffiffiffiffi
q�
L

p
v�L þ

ffiffiffiffiffiffi
q�
R

p
v�R þ ðB�

yR
� B�

yL
ÞsignðBxÞffiffiffiffiffi

q�
L

p þ ffiffiffiffiffiffi
q�
R

p ; ð59Þ

w�� ¼
ffiffiffiffiffi
q�
L

p
w�

L þ
ffiffiffiffiffiffi
q�
R

p
w�

R þ ðB�
zR
� B�

zL
ÞsignðBxÞffiffiffiffiffi

q�
L

p þ ffiffiffiffiffiffi
q�
R

p ; ð60Þ

B��
y ¼

ffiffiffiffiffi
q�
L

p
B�
yR

þ ffiffiffiffiffiffi
q�
R

p
B�
yL
þ ffiffiffiffiffiffiffiffiffiffiffi

q�
Lq

�
R

p ðv�R � v�LÞsignðBxÞffiffiffiffiffi
q�
L

p þ ffiffiffiffiffiffi
q�
R

p ; ð61Þ

B��
z ¼

ffiffiffiffiffi
q�
L

p
B�
zR
þ ffiffiffiffiffiffi

q�
R

p
B�
zL
þ ffiffiffiffiffiffiffiffiffiffiffi

q�
Lq

�
R

p ðw�
R � w�

LÞsignðBxÞffiffiffiffiffi
q�
L

p þ ffiffiffiffiffiffi
q�
R

p ; ð62Þ
where sign(Bx) is 1 for Bx > 0 and �1 for Bx < 0. Here, it is found that the jump conditions across S�
a (52)

are satisfied by (59)–(62). Finally, the jump condition of the energy density across S�
a waves can be solved as
e��a ¼ e�a �
ffiffiffiffiffi
q�
a

p
ðv�a � B

�
a � v�� � B��ÞsignðBxÞ; ð63Þ
where the minus and the plus of the right side correspond to a = L and R, respectively.

In this way, we can derive the complete set of the intermediate states, U�
L;U

��
L ;U

��
R ; and U�

R, and corre-

sponding fluxes, F�
L;F

��
L ;F

��
R and F�

R, which are satisfied with all jump conditions in our approximate Rie-

mann problem. Therefore, the numerical fluxes of our solver are obtained by the integral of conservation

laws over the left or the right half of the Riemann fan, (SLDt, 0) · (0, Dt) or (0, SRDt) · (0, Dt), as in (8), for

instance such that
F ¼ FL þ SLU
�
L � SLUL ¼ F�

L ð64Þ

for SL 6 0 6 S�

L, or
F ¼ FL þ S�
LU

��
L � ðS�

L � SLÞU�
L � SLUL ¼ F��

L ð65Þ

for S�

L 6 0 6 SM . In general, the fluxes are given by
FHLLD ¼

FL if SL > 0;

F�
L if SL 6 0 6 S�

L;

F��
L if S�

L 6 0 6 SM ;

F��
R if SM 6 0 6 S�

R;

F�
R if S�

R 6 0 6 SR;

FR if SR < 0:

8>>>>>>>><
>>>>>>>>:

ð66Þ
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Fig. 4. Schematic structure of the Riemann fan with three intermediate states.
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This solver is named as HLLD solver because, as shown in the next subsection, not only isolated contact

discontinuities but also isolated all other discontinuities (not shocks) in the MHD system are exactly re-

solved, i.e., ‘‘D’’ represents all Discontinuities in MHD.

It is found at once that the four-state HLL Riemann solver for MHD as illustrated in Fig. 3 is naturally

reduced to the two-state solver as in Fig. 2 for Bx = 0 because, in this case, S�
L ¼ S�

R ¼ SM from (51). There-
fore, the estimation of the inner intermediate states as (59)–(62) is not necessary for the case of Bx = 0. Note

also that the HLLC solver for the Euler equations [2,29] is included in the HLLD solver for the MHD equa-

tions as the limit of zero magnetic field.

In order to obtain the exact upper and lower bounds of the signal speeds for the Riemann prob-

lem, complicated exact solutions for the MHD Riemann problem are needed [2]. Therefore, SL and

SR may be estimated approximately by (12) or (13). Also, since the explicit expressions of the larg-

est and smallest eigenvalues for MHD are known as in (3), other estimations may be utilized, for

instance such that
SL ¼ minðuL; uRÞ �maxðcf L; cfRÞ; SR ¼ maxðuL; uRÞ þmaxðcf L; cfRÞ; ð67Þ

or any adequate estimations (e.g., [16]).
5.2. Exact resolution of isolated discontinuities and shocks

At an isolated tangential discontinuity (6),
uL ¼ uR ¼ u; pTL
¼ pTR

¼ pT: ð68Þ
Substituting (68) into (38) gives
SM ¼ ðSR � uÞqRu� ðSL � uÞqLu
ðSR � uÞqR � ðSL � uÞqL

¼ u: ð69Þ
Then, by substituting (69) into (43) to (48), it is obtained that
U�
L ¼ UL; U�

R ¼ UR: ð70Þ

In the case of which tangential discontinuities can be formed, i.e., Bx = 0, the HLLD solver is reduced to the

two-state HLL solver as stated previously. Thus, the HLLD solver gives the exact solution of an isolated

tangential discontinuity for a general x/t,
U ¼
UL if x=t < u;

UR if x=t > u:



ð71Þ
At an isolated contact discontinuity (5), in addition to (68),
vL ¼ vR ¼ v; wL ¼ wR ¼ w; ByL ¼ ByR ¼ By ; BzL ¼ BzR ¼ Bz: ð72Þ
From the condition (68), (70) is obtained in the same way. Also, by substituting (72) into (59)–(63) with

(49),
U��
L ¼ UL; U��

R ¼ UR: ð73Þ

Therefore, an isolated contact discontinuity can be resolved exactly as (71) in the HLLD solver.

Rotational discontinuities must satisfy the jump conditions of (4). Therefore, at an isolated rotational

discontinuity,
qL ¼ qR ¼ q; ð74Þ

besides (68). Therefore, the wave speed of an isolated rotational discontinuity is given by
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sA ¼ u� jBxjffiffiffi
q

p ; ð75Þ
that is, sA = k2 or k6 of (3). Without loss of generality, assume here that Bx > 0 and sA > u. In this case, the

relations,
ffiffiffi
q

p
vR � vLð Þ ¼ � ByR � ByL

� �
;

ffiffiffi
q

p
wR � wLð Þ ¼ � BzR � BzLð Þ; ð76Þ
must be realized from the jump conditions. Similar to the discussion for an isolated contact or tangential

discontinuity, (70) is obtained from (68). Substituting (76) into (59)–(63) gives
U��
L ¼ U��

R ¼ UL ð77Þ

with the help of
eR � eL ¼ � ffiffiffi
q

p
vR � BR � vL � BLð Þ: ð78Þ
The equalities (77) are retained also for Bx < 0. On the other hand, when sA < u,
U�
L ¼ UL; U��

L ¼ U��
R ¼ U�

R ¼ UR: ð79Þ

Therefore, in general,
U ¼
UL if x=t < sA;

UR if x=t > sA:



ð80Þ
Thus it is shown that the HLLD solver also resolves an isolated rotational discontinuity exactly.

The speed of an isolated fast shock sf is computed as the largest or smallest eigenvalue of theRoematrix.We

may consider an isolated shock corresponding to the largest eigenvalue only, i.e., sf ¼ kRoe
7 , because of the sym-

metry of the left and the right states. The left and the right states at an isolated fast shock are related by
sf UR �ULð Þ ¼ FR � FL: ð81Þ

Once the maximum signal speed SR in the HLLD solver is given by the exact shock velocity, (38) gives
SM ¼ ðsf � uLÞqLuL � ðSL � uLÞqLuL
ðsf � uLÞqL � ðSL � uLÞqL

¼ uL ð82Þ
by using the jump conditions for the continuity equation and the normal component of the momentum

equation in (81). Also,
p�T ¼ pTL
; ð83Þ
by substituting (82) into (41) or equivalently (23). Then, substituting (82) and (83) into (43)–(48), some alge-
braic manipulations with the help of (81) give
U�
L ¼ U�

R ¼ UL: ð84Þ

Therefore, it is also obtained straightforwardly from (59)–(63) that
U��
L ¼ U��

R ¼ UL: ð85Þ

Similarly, when sf = SL,
U�
L ¼ U��

L ¼ U��
R ¼ U�

R ¼ UR: ð86Þ

Thus, the exact shock solution,
U ¼
UL if x=t < sf ;

UR if x=t > sf ;



ð87Þ
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is obtained in the HLLD solver. It is noted that the exact resolution of an isolated fast shock (87) relies on

the proper choices of SL and SR, and thus, the algorithm of (13) is appropriate in this particular viewpoint.

On the other hand, the resolution of an isolated contact, tangential discontinuity (71) and rotational dis-

continuity (80) does not depend on the detailed estimation of SR and SL.
5.3. Positivity of HLLD solver

Consider the set of the physically realistic states with positive densities and positive pressures for the

MHD equations such that
G ¼

q

qu

qv

qw

By

Bz

e

2
666666666664

3
777777777775
; q > 0 and e� 1

2
qjvj2 � 1

2
jBj2 > 0

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

:

In the MHD equations, and likewise in the Euler equations, the average states defined by

U = (1 � h)U1 + hU2 with 0 6 h 6 1 are physically realistic states if both U1 and U2 are physical [16]. Since
Godunov-type schemes update the subsequent states by averaging the states of the exact or the approxi-

mate solution of the Riemann problem, a positively conservative scheme can be constructed in those

schemes if all the states generated are physical. Thus, a positively conservative Riemann solver generates

states in G if the preceding states are contained in G.

We now consider the right outer and inner intermediate states, U�
R and U��

R . The positivity preserving

conditions become
q�
R > 0; ð88Þ

q��
R > 0; ð89Þ

p�R ¼ ðc� 1Þ e�R � 1

2
q�
Rjv�Rj

2 � 1

2
jB�

Rj
2

� �
> 0; ð90Þ

p��R ¼ ðc� 1Þ e��R � 1

2
q��
R jv��R j

2 � 1

2
jB��

R j
2

� �
> 0: ð91Þ
In order to simplify the subsequent arguments, the following variables are introduced:
n � SR � uR; g � SR � SM ; f � SM � uR: ð92Þ

Since SR is the maximum signal speed in the Riemann system, both n and g are positive. On the other hand,

f can be either positive or negative.

The conditions of (88) and (89) are easily shown from (43) and (49) such that
q�
R ¼ q��

R ¼ n
g
qR > 0: ð93Þ
To show the inequality (90), let us consider the positivity of u defined and rearranged by some algebraic

manipulations as follows:
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u � g e�R � 1

2
q�
Rjv�Rj

2 � 1

2
jB�

Rj
2

� �

¼ qRn
2

f2 þ pRfþ
pRn
c� 1

þ qRn
2

ðjv?R
j2 � jv�?R

j2Þ þ n
2
ðjB?R

j2 � jB�
?R
j2Þ þ f

2
ðjB?R

j2 þ jB�
?R
j2Þ

þ Bxðv?R
� B?R

� v�?R
� B�

?R
Þ

¼ qRn
2

1� jB?R
j2

qRng� B2
x

 !
f2 þ pRfþ

pRn
c� 1

; ð94Þ
where v^ = (0, v, w) and B^ = (0, By, Bz). It is noted that (94) is identical to the corresponding equation for

the HLLC solver [2] except for the correction in the first term. Since SR is expressed by k7 of (3) and is the

maximum speed in the Riemann system, the inequalities, n P cfR and g P cfR , will be satisfied. Therefore,
u0 ¼ qRn
2

1� jB?Rj2

qRc
2
fR
� B2

x

 !
f2 þ pRfþ

pRn
c� 1

6 u: ð95Þ
This relation indicates that u is necessarily positive if u 0 is positive. (We point out here that Gurski [13]

misled a ‘‘stronger condition’’ for positivity in view of the inequality (95).) Since

qc2f � jBj2 ¼ qc2f � B2
x � jB?j2 > 0 except when B^ = 0 and B2

x P cp, the first term of (95) is necessarily po-

sitive. Note that u in the case of B^ = 0 fully corresponds to that for the HLLC solver [2], and therefore, the
positivity of u is assured in this case. Thus, since all coefficients with respect to f are positive, u 0 is positive

for any f if the discriminant of u 0 is negative:
Dðu0Þ ¼ p2R � 2qRpR
c� 1

1� jB?R
j2

qRc
2
fR
� B2

x

 !
n2 < 0:
Therefore,
n2 >
ðc� 1ÞpR

2qR

1� jB?R
j2

qRc
2
fR
� B2

x

 !�1

: ð96Þ
If Bx 6¼ 0, by using the relations that
qc2s � B2
x ¼ � B2

x jB?j2

qc2f � B2
x

; c2f c
2
s ¼

cpB2
x

q2
;

(96) can be rewritten as
n2 >
c� 1

2c
c2fR : ð97Þ
Also, if Bx = 0, where qc2f ¼ cp þ jB?j2, the identical inequality is easily derived from (96). Therefore, from

(92) and (97), in order to preserve the positivity of the pressure (90), SR must be chosen to be satisfied with

the inequality as
SR > uR þ

ffiffiffiffiffiffiffiffiffiffiffi
c� 1

2c

s
cfR : ð98Þ
Note that the resultant inequality (98) is quite similar to the corresponding inequality for the HLLC solver

(22) but the fast magnetosonic speed cfR must be replaced by the sound speed aR. As found form (12), (13),
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or (67), since the HLLD solver for MHD clearly satisfies (98), our solver ensures the positivity preserving

property (90).

Subsequently, if the pressure at the outer states is retained as positive, the positivity of the pressure at the

inner states is shown straightforwardly by using (59)–(63) to be
p��R ¼ ðc� 1Þ e��R � 1

2
q�
Rjv��j

2 � 1

2
jB��j2

� �

¼ p�R þ c� 1

2

ffiffiffiffiffiffi
q�
R

p
v�R þ B�

RsignðBxÞ
�� ��2 � ffiffiffiffiffiffi

q�
R

p
v�� þ B��signðBxÞ

�� ��2� �
¼ p�R > 0: ð99Þ
Also, it is noted from (99) that our solver is consistent with the continuous condition of the pressure across

rotational discontinuities.

The positivity of the density and pressure at the left outer and inner intermediate states, U�
L and U��

L , is

also assured if the inequality,
SL < uL �

ffiffiffiffiffiffiffiffiffiffiffi
c� 1

2c

s
cfL ; ð100Þ
is satisfied. Thus, the proof of the positivity is completed. It is obvious that (98) and (100) are stronger than

the conditions by Gurski [13]. The present proof will also be applicable to the single-state HLL Riemann

solver since the one intermediate state of the HLL solver is given by the average of the HLLD intermediate
states contained in G.

At the end of this subsection, we reconsider the prerequisite inequalities to obtain a stronger condition

for the pressure positivity (95). We find at once that the prerequisite inequality as n P cfR is assured due to

the estimation (67) or something equivalent. On the other hand, it is not so easy to confirm whether the

other inequality g P cfR is satisfied or not at any situation, because SM is evaluated not only from the right

states but also from the left states. In order to simplify the discussion, we only pay attention to expansion

waves which are more problematic than shocks in terms of positivity. From the jump condition of the nor-

mal momentum across SR, we obtain that
g ¼ nþ
pTR

� p�T
qRn

:

Since pTR
is greater than p�T under the condition uR � uL > ðpTR

� pTL
Þ=qLðSL � uLÞ, the inequalities

g > n P cfR are satisfied at such strong expansion waves. Thus, both prerequisite inequalities for the pres-

sure positivity are satisfied in the most problematic situation. Notice that this fact does not mean that other

situations than strong expansion waves would necessarily break the prerequisite inequalities. Moreover,

since the positivity preserving condition (98) is a rather weak and easily conquerable restriction, the HLLD

solver is thought to be a positively conservative scheme.
6. Numerical tests

We present in this section results for several test problems computed by the HLLD Riemann solver. For

comparison, the same problems are solved by the single-state HLL Riemann solver and the standard lin-

earized Riemann solver, the so-called Roe scheme [26], in which we adopt the Roe average by Balsara [1].

Also, the HLLD solver is compared with the variants of the HLLC-type solver. In our tests, as an algo-

rithm to estimate SL and SR, (67) is used for simplicity and efficiency because numerical solutions by
(67) are indistinguishable from those by (13) in spite of not resolving isolate fast shocks exactly. Also, c
is fixed to 5/3 throughout our numerical tests. In order to evaluate the essential abilities of the solver,
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we restrict our attention to the scheme of first-order accuracy in space and second-order in time without

additional notice.

6.1. One-dimensional shock tube problems

We perform several one-dimensional shock tube problems which are solved within the interval

�0.5 6 x 6 0.5, with 800 grid points, and with a CFL number of 0.8, through this subsection.

We perform a typical shock tube problem presented first by Dai and Woodward [6], and tested by Ryu

and Jones [27] and many others, where the initial states are given by ðq; p; u; v;w; By ;BzÞ ¼ ð1:08; 0:95;
1:2; 0:01; 0:5; 3:6=

ffiffiffiffiffiffi
4p

p
; 2=

ffiffiffiffiffiffi
4p

p
Þ for x < 0, ð1; 1; 0; 0; 0; 4=

ffiffiffiffiffiffi
4p

p
; 2=

ffiffiffiffiffiffi
4p

p
Þ for x > 0, with Bx ¼ 4=

ffiffiffiffiffiffi
4p

p
. The exact

solution of this problem is composed of various shocks and discontinuities; two fast shocks, two rotational

discontinuities, two slow shocks, one contact discontinuity [6,27]. In Fig. 5, the numerical results are plotted

at t = 0.2. It is found that the numerical solution of the HLLD solver seems to be indistinguishable from
that of the Roe scheme, whereas the HLL solver cannot resolve the contact and the rotational discontinu-

ities in particular. The magnifications of the density profile, where the solution of the HLL solver is omitted

for clarity, around the fast and slow shocks at the left of the contact discontinuity also indicate that the

resolution of the HLLD solver is almost equal to that of the Roe scheme even for the slow shock in this

problem.

Since the solution of this problem includes all ordinary discontinuities in MHD, it is worth considering

whether the similar solvers to the HLLD solver, the variants of the HLLC-type solver by Gurski (HLLC-

G) [13] and by Li (HLLC-L) [19], can resolve discontinuities and shocks well or not. While the smooth
HLLC-type solver [13] was thought to be comparable with one of the Linde solver [20], another Linde�s
solver [21] seemed to be less accurate than the HLLC-L solver [19]. Thus, the numerical test by the smooth

HLLC-type solver are not performed. Since all solvers tested here may resolve isolated fast shocks exactly if

we choose (13), the resolution of the fast shocks in these solvers seems to be comparable with one another.

In order to be clear about the differences of the solvers, we only show the solution without the fast shocks in

Fig. 6. The difference between the results of the HLLD solver and that of the Roe scheme is invisible even in

this enlarged figure. We find that the HLLC-type solvers as well as the HLLD solver can resolve the contact

discontinuity as expected although the contact discontinuity is smeared out by the HLL solver. The rota-
tional discontinuities, on the other hand, are extremely smeared out in both of the HLLC-type solvers

although the HLLC-L solver is slightly more accurate in comparison with the HLLC-G solver. As a con-

sequence, the numerical solution of the HLL or the HLLC-type solver seems to be quite different from the

solution of the HLLD solver or the Roe scheme. We also find from Fig. 7 that the resolution of the HLLC-

type solver cannot be recovered to the level of the HLLD solver or the Roe scheme even when the solvers

are extended to second-order accuracy in space, which are achieved by a linear reconstruction for the prim-

itive variables with minmod limiter. The failure of the HLLC-type solvers is probably caused by the

assumption that the magnetic field is constant over the Riemann fan. Thus, the HLLD solver has an obvi-
ous advantage over the two-state Riemann solvers.

We also test a standard shock tube problem first discussed by Brio and Wu [4] and tested by many oth-

ers, where the initial states are (q, p, u, v, w, By, Bz) = (1, 1, 0, 0, 0, 1, 0) for x < 0, (0.125, 0.1, 0, 0, 0, �1, 0)

for x > 0, with Bx = 0.75. Although c = 2 in the original test, our test follows the corresponding test by Ryu

and Jones [27] with c = 5/3. Fig. 8 shows the results at t = 0.1, which include not only ordinary waves but

also the slow compound wave caused by the non-convexity of the MHD equations. We find that the numer-

ical solution of the HLLD solver is almost comparable to that of the Roe scheme as a whole, whereas the

contact and compound waves are not well resolved by the single-state HLL solver. The magnifications of
the density around the slow compound wave and the slow shock, however, indicate that the solution of the

HLLD solver seems to be slightly smeared out compared with that of the Roe scheme although the peaks of

the density on the compound wave are little different from each other (qRoe = 0.820, qHLLD = 0.815), and
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Fig. 5. Results of one-dimensional shock tube test with the initial left states ðq; p; u; v;w;By ;BzÞ ¼
ð1:08; 0:95; 1:2; 0:01; 0:5; 3:6=

ffiffiffiffiffiffi
4p

p
; 2=

ffiffiffiffiffiffi
4p

p
Þ, the right states ð1; 1; 0; 0; 0; 4=

ffiffiffiffiffiffi
4p

p
; 2=

ffiffiffiffiffiffi
4p

p
Þ, and Bx ¼ 4=

ffiffiffiffiffiffi
4p

p
. Numerical solutions of the

HLL solver, the HLLD solver, and the Roe scheme are plotted at t = 0.2. (Top left) q, (middle left) v, (middle right) w, (bottom left) By,

(bottom right) Bz, (top middle) q around the left fast shock, (top right) q around the left slow shock are shown.
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the differences may not be important. The smaller resolution of the slow shocks in the HLLD solver may be

because the slow waves in the Riemann fan are not explicitly included. On the other hand, although the

solution near the head of the rarefaction attached to the compound wave are almost equivalent, the tail

of the compound rarefaction calculated by our Roe scheme seems to be very slightly undershot. This fact



Bz

ρ

By

v

1.3

1.4

1.5

1.6

0.0 0.1 0.2

HLL solver
HLLC-G solver
HLLC-L solver

HLLD solver
Roe scheme

-0.1

0.0

0.1

0.2

0.0 0.1 0.2

HLL solver
HLLC-G solver
HLLC-L solver

HLLD solver
Roe scheme

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.2

HLL solver
HLLC-G solver
HLLC-L solver

HLLD solver
Roe scheme

1.4

1.5

0.0 0.1 0.2

HLL solver
HLLC-G solver
HLLC-L solver

HLLD solver
Roe scheme

0.5

0.6

0.7

0.8

0.0 0.1 0.2

HLL solver
HLLC-G solver
HLLC-L solver

HLLD solver
Roe scheme

w
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HLLC-type solver by Gurski (HLLC-G) [13], the HLLC-type solver by Li (HLLC-L) [19], the HLLD solver, the Roe scheme are

plotted at t = 0.2. (Top) q, (middle left) v, (middle right) w, (bottom left) By, (bottom right) Bz are shown within �0.02 < x < 0.26.

T. Miyoshi, K. Kusano / Journal of Computational Physics 208 (2005) 315–344 335
might be due to the underestimation of the signal speed of the rarefaction wave in the Roe scheme, which is

inevitable for the linearized Riemann solver. Corresponding undershoots are not observed in the HLLD

solver.
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Although the above two tests contain a number of different waves and are quite useful when comparing

MHD solvers with one another, tests for isolated waves are also meaningful. Since information of the slow

waves is lost when constructing the HLLD solver, we concentrate on test problems for the slow waves in

particular. Following the test of a slow switch-off shock by Falle et al. [11], the initial states are given by
(q, p, u, v, w, By, Bz) = (1.368, 1.769, 0.269, 1, 0, 0, 0) for x < 0, (1, 1, 0, 0, 0, 1, 0) for x > 0, with Bx = 1.

Fig. 9 shows the results at t = 0.2, where the tangential component of the magnetic field, By, is switched

off behind the shock. It is found that the HLLD solver can resolve the isolated slow shock equally to

the Roe scheme despite the loss of information on the slow waves while the HLL solver cannot resolve

the shock well. We note that an error caused by the jump of the initial states is observed in every solver.

We also perform the test of a slow switch-off rarefaction given also by [11], where the initial states are

(q, p, u, v, w, By, Bz) = (1, 2, 0, 0, 0, 0, 0) for x < 0, (0.2, 0.1368, 1.186, 2.967, 0, 1.6405, 0,) for x > 0, with

Bx = 1. Fig. 10 shows the results at t = 0.2, where By is switched off over the head of the rarefaction. Also
in this test, a startup error is observed near the tail of the rarefaction. It is thought that such errors may be

inevitable unless the initial left and right states are connected continuously with a finite width. We find that

the strong slow rarefaction can be calculated by the HLL and the HLLD solvers without any extra numer-

ical dissipation. The isolated fast rarefaction [11] can also be calculated although the results are not shown

in this paper. The success of these solvers may be because the solvers are bounded by the maximum and
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minimum signal speeds in the Riemann fan and, as a result, include the effect of not only the slow rarefac-

tion but also the fast rarefaction properly. On the other hand, the Roe scheme fails in this test, where the
entropy condition is broken at x = 0. It is found, however, that an additional entropy correction (e.g., [14])

can cure the unphysical solution in this problem.
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In the final shock tube test, we consider super-fast expansions which may be rather extreme situations.

The initial states are given by (q, p, u, v, w, By, Bz) = (1, 0.45, �u0, 0, 0, 0.5, 0) for x < 0,

(1, 0.45, u0, 0, 0, 0.5, 0) for x > 0, with Bx = 0. The fast magnetosonic Mach number Mf of the expansion

wave is given by u0 since the fast magnetosonic speed cf is 1 at the initial states. This type of problem
for the Euler equations was shown not to be linearizable for certain Mach numbers [9]. This will also be

true for the MHD equations. Indeed, as shown in Fig. 11, although the physically realistic solutions,

non-negative density and pressure, can be obtained in the problem with Mf = 3 for all solvers, the Roe

scheme even with the entropy correction fails in the problem with Mf = 3.1. On the other hand, the

HLL and the HLLD solvers preserve the positivity without any extra numerical dissipation as expected

analytically.

6.2. Applicability to multi-dimensions

It is known that the extension of the one-dimensional upwind-type MHD solver to multi-dimensions is

not straightforward because the solenoidal condition of the magnetic field is broken numerically. In order

to remove the numerical divergence errors, several approaches have been applied to the upwind-type solver

and compared with one another (e.g., [8,30]). Although the so-called constrained transport (CT) method by
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Evans and Hawley [10] can maintain the divergence free condition within machine accuracy, there are no

general guidelines to apply any one-dimensional MHD solver properly. Thus, the application of the CT

method to the HLLD solver is beyond the scope of this paper. On the other hand, the other divergence

cleaning method by projection [3], diffusion [23], or transport [8,25] of divergence errors can be directly

added on to existing one-dimensional MHD schemes.

Particularly, Dedner et al. [8] showed that some add-on divergence cleaning methods can be expressed by

the so-called generalized Lagrange multiplier (GLM) formulation of the MHD equations. They also

pointed out that the choice of the mixed hyperbolic/parabolic GLM-MHD gives excellent results since
the divergence errors in the mixed GLM-MHD are transported out of the domain by two waves with

the maximal admissible speed even in stagnation points and are damped at the same time. The mixed

GLM-MHD is also effective in other aspects; easy to implement on an existing code, fast due to the explicit

approximation, conservative for the physical quantities. Thus, keeping practical applications in mind, the

divergence cleaning method based on the mixed GLM-MHD is adopted in our multi-dimensional test.

We perform, in particular, the so-called Orszag–Tang vortex problem [24] which is a standard two-

dimensional test for MHD schemes (e.g., [30] and many other references therein). The Orszag–Tang vortex

problem is thought to be appropriate for comparing the resolution of MHD schemes because complex
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Fig. 11. Results of one-dimensional shock tube test with the initial left states (q, p, u, v, w, By, Bz) = (1, 0.45, �u0, 0, 0, 0.5, 0), the right

states (1, 0.45, u0, 0, 0, 0.5, 0), and Bx = 0. Numerical solutions of the HLL solver, the HLLD solver, and the Roe scheme with the
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Note that the solution of the Roe scheme is not plotted in the right panel because the Roe scheme fails after several time steps in the

case of u0 = 3.1.
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Table 1

Relative differences of the temperature from the solution of the Roe scheme with corresponding accuracy and resolution, dTRoe

N 1st HLL 1st HLLD 2nd HLL 2nd HLLD

50 0.0779 0.0054 0.0239 0.0040

100 0.0579 0.0043 0.0143 0.0028

200 0.0453 0.0034 0.0083 0.0027

400 0.0353 0.0024 0.0046 0.0011
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interactions of several MHD shock waves are included in the evolution of the vortex. The initial conditions

of the problem are given by (q, p, u, v, w, Bx, By, Bz) = (c2, c, �siny, sinx, 0, �siny, sin2 x, 0) in a square

domain 0 < x, y < 2p with N · N grids. Periodic boundary conditions are adopted in both coordinate direc-

tions. In the present test, second-order accurate schemes with the monotonized central (MC) limiter as well

as first-order accurate schemes are compared with one another at the resolution of N = 50, 100, 200, and
400. In all simulations, a CFL number of 0.4 is used. Especially, as an indicator of the ability of the

schemes, the numerical solution of the temperature T = p/q at t = p is taken notice of in the following dis-

cussions. In Table 1, we show the relative differences of the temperature from the solution of the Roe

scheme with corresponding accuracy and grid number defined as
Table

Relativ

N

50

100

200

400
dTRoe ¼
P

THLL=HLLD � TRoe
�� ��P

TRoe
;

where the summation is taken over the grid cells. We find that dTRoe for the HLL solver becomes large

especially with decreasing accuracy and grid number, whereas dTRoe for the HLLD solver is less than
1% in every case. In Table 2, we also summarize the relative differences of the temperature from the refer-

ence solution as
dT ref : ¼
P

THLL=HLLD=Roe � T ref:

�� ��P
T ref :

;

where the reference temperature Tref. is calculated by the second-order MUSCL Roe scheme with the MC

limiter at the finer grid N = 800 adopting the projection divergence cleaning method, which is one of the

most accurate and reliable method at present [30]. It is found that dTref. for the HLLD solver is comparable

to that for the Roe scheme with corresponding accuracy and resolution within a trivial error although cor-

responding dTref. for the HLL solver is large. Indeed, as seen in Figs. 12 and 13, the numerical solution of
the HLLD solver is almost equal to that of the Roe scheme over the whole domain, while the HLL solver is

less accurate and less resolved than the Roe and HLLD solvers especially around (x, y) = (p, p). Thus, these
results imply that the HLLD MHD solver is applicable to the multi-dimensional problems even with com-

plex wave structures equally to the Roe scheme.
2

e differences of the temperature from the reference solution, dTref.

1st HLL 1st HLLD 1st Roe 2nd HLL 2nd HLLD 2nd Roe

0.4106 0.3661 0.3650 0.1580 0.1365 0.1357

0.3340 0.2953 0.2950 0.0844 0.0676 0.0675

0.2620 0.2257 0.2257 0.0394 0.0308 0.0315

0.1960 0.1644 0.1647 0.0172 0.0132 0.0131



Fig. 12. Gray-scale images of the temperature distribution in the Orszag–Tang vortex problem at t = p for (left to right) the HLL

solver, the HLLD solver, the Roe scheme at N = 200, and the reference solution. The left half of the domain is shown.
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Fig. 13. One-dimensional temperature distribution in the same problem as in Fig. 12 along (left) y = 0.64p, (right) y = p. for the HLL

solver, the HLLD solver, and the Roe scheme. The solid line shows the reference solution in each panel.
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7. Conclusions

We have proposed the multi-state HLL approximate Riemann solver for the ideal MHD equations,

named as HLLD approximate Riemann solver. The HLLD Riemann solver was constructed under the
assumption that the normal velocity is constant over the Riemann fan. This assumption naturally con-

cluded that the four states approximation in the Riemann fan are appropriate for Bx 6¼ 0, whereas the

intermediate states are reduced to the two states when Bx = 0. We showed that the HLLD solver can ex-

actly resolve all isolated discontinuities in the MHD system as well as isolated fast shocks. We also proved

analytically that the HLLD solver is positively conservative if proper inequalities for the maximum and

minimum signal speeds are satisfied. Especially, it was shown that those conditions are quite similar to the

conditions for the HLLC solver except for the difference of the expressions for the maximum and mini-

mum eigenvalues. Thus, we considered that the HLLD solver for MHD is a natural extension of the
HLLC solver for the Euler equations. Also, several numerical tests demonstrated that the HLLD solver

is accurate enough in comparison with the linearized Riemann solver while keeping its robustness. From a

typical two-dimensional test, it was considered that the extension to multi-dimensions in the HLLD solver
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may be applicable in a similar way as in the linearized Riemann solver. The ratios of CPU time s for the

Orszag–Tang vortex problem at N = 400 in our codes are (sHLL:sHLLD:sRoe) = (1:1.35:2.67) in the part of

the flux calculation and (1:1.13:1.69) over the whole simulation run, although the actual efficiency for the

whole simulation much depends not only on the optimization of the code but also on the algorithm of the

divergence cleaning method, the higher-order extension method, the time integration method, and so on.
Thus, the HLLD solver seems to be effective particularly in regard to robustness and efficiency rather than

the Roe scheme, although exact positivity preserving property in multi-dimensions may not be necessarily

assured even in the HLLD solver. Also, the HLLD solver may be applicable to the modified MHD system

as subtracting off the background potential field first proposed by Tanaka [28] and applied by many oth-

ers [18,22,25]. In this modified system, the HLLD solver will be constructed by replacing the total pressure

pT with the fluctuating part of the total pressure ~pT ¼ pT � jB0j2=2 in (41) for example. A detailed algo-

rithm will be given in the future paper. These all results indicate that the HLLD Riemann solver for the

ideal MHD equations can be an alternative to the linearized Riemann solver for MHD.
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